
Visual Paradigm
Data Flow Diagram with Examples - Securities Trading Platform

Tutorial

https://www.visual-paradigm.com/tutorials/data-flow-diagram-example-securities-trading-platform.jsp Page 1 of 4

Data Flow Diagram with Examples - Securities Trading
Platform
Written Date : February 16, 2015

Data Flow Diagram (DFD) provides a visual representation of the flow of information (i.e. data) within
a system. By drawing a Data Flow Diagram, you can tell the information supplied by and delivered
to someone who take parts in system processes, the information needed in order to complete the
processes and the information needed to be stored and accessed. This article describes and explain
Data Flow Diagram (DFD) by using a securities trading platform as an example.

The Securities Trading Platform Example

Context DFD

The figure below shows a context Data Flow Diagram that is drawn for a security trading platform. It
contains a process (shape) that represents the system to model, in this case, the "securities trading
platform". It also shows the participants who will interact with the system, called the external entities.
In this example, CS Assistant, Customer and Broker are the entities who will interact with the system.
In between the process and the external entities, there are data flow (connectors) that indicate the
existence of information exchange between the entities and the system.

Context DFD is the entrance of a data flow model. It contains one and only one process and does not
show any data store.

Level 1 DFD

The figure below shows the level 1 DFD, which is the decomposition (i.e. break down) of the
securities trading platform process shown in the context DFD. Read through the diagram, and then
we will introduce some of the key concepts based on this diagram.



Visual Paradigm
Data Flow Diagram with Examples - Securities Trading Platform

Tutorial

https://www.visual-paradigm.com/tutorials/data-flow-diagram-example-securities-trading-platform.jsp Page 2 of 4

The securities trading platform Data Flow Diagram example contains five processes, three external
entities and three data stores. Although there is no design guidelines that governs the positioning
of shapes in a Data Flow Diagram, we tend to put the processes in the middle and data stores and
external entities on the sides to make it easier to comprehend.

Based on the diagram, we know that a Customer Service Assistant provides customer details to
the Open Account process. The result is the Customer details being stored in Customer data store
and Account details being stored in Account data store. Although we said that the attempt to store
customer and account details happens after the details are being provided by the Customer Service
Assistant, the Data Flow Diagram implies no such thing. It is our common sense that lead us to
interpret the diagram in the way that we understand it naturally. Strictly speaking, the diagram only
tells us the Open Account process receives customer details and produce customer and account
details, with no order specified. Note that Data Flow Diagram does not answer in what way and in
what order the information is being used throughout a system. If this information is important and
worth mentioning, consider to model it with diagrams like BPMN Business Process Diagram or UML
Activity Diagram.

The process Check Transaction receives Transaction details from the Transaction data store and
pass it on to Customer.

A Customer can Deposit Cash by providing the Deposit amount and the result is the Updated account
balance being stored in the Account data store.

Similarly, a Customer can Withdraw Cash. The result is that he will receive the Withdrawn amount
and the Updated account balance will be stored in the Account data store.

Finally, both the Customer and Broker can initiate the Place Order process, which results in the
Transaction details being stored in the Transaction data store. The Place Order process also passes
the Transaction details to the Stock Exchange Center, which is an entity out of the system scope. In
the next section, we will introduce a way to represent this kind of entity.

https://www.visual-paradigm.com/features/bpmn-diagram-and-tools/#business-process-diagram
https://www.visual-paradigm.com/features/uml-tool/#activity-diagram
https://www.visual-paradigm.com/features/uml-tool/#activity-diagram


Visual Paradigm
Data Flow Diagram with Examples - Securities Trading Platform

Tutorial

https://www.visual-paradigm.com/tutorials/data-flow-diagram-example-securities-trading-platform.jsp Page 3 of 4

Level 2 DFD

Just like the process in context DFD, processes in level 1 DFD can also be decomposed into a
deeper level or even levels of process details. The figure below shows the level 2 DFD of the Place
Order process.

The external entities and data stores in this DFD correspond with those shown in the upper level
(i.e. the diagram above). What makes it different is the breakdown of Place Order process into Place
Order (Online) process and Place Order (Offline) process.

Based on this diagram, we know that a Customer can perform Place Order (Online) by supplying
Order details while a Broker can perform Place Order (Phone) also by supplying Order details; in
either case causing Transaction details to be stored in the Transaction data store and passed to the
Stock Exchange Center.

Using stereotype for modeling a "special kind of" entity
Stereotype and tagged values are kind of extensibility mechanisms introduced by Object
Management Group (OMG). It allows designers to extend the vocabulary of UML in order to create
new model elements. As a software design tool, Visual Paradigm extends the support of stereotype
to non UML standards like DFD and ERD. Take the securities trading platform as example, we can
define a stereotype Third Party for external entity. External entities with the stereotype assigned are
said to be "a kind of third party entity".

Be aware of the level of details
In this Data Flow Diagram example the word "details" is used many times when labeling data. We
have "customer details", "transaction details", etc. What if we write them explicitly as "customer name,
email address, job, address" and "stock number, amount, bid price"? Is this correct? Well, there is no
definite answer to this question but try to ask yourself a question when making a decision. Why are
you drawing a DFD?

In most cases, Data Flow Diagram is drawn in the early phase of system development, where
many details are yet to be confirmed. The use of general terminologies like "details", "information",
"credential" certainly leave room for discussion. However, using general terms can be kind of lacking
details and make the design lost its usefulness. So it really depends on the purpose of your design.

Don't overdrawn
In a Data Flow Diagram, we focus on the interactions between the system and external parties, rather
than the internal communications among interfaces. Therefore, data flows between interfaces and the
data stores used are considered to be out of scope and should not be shown in the diagram.

http://www.omg.org/
http://www.omg.org/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/


Visual Paradigm
Data Flow Diagram with Examples - Securities Trading Platform

Tutorial

https://www.visual-paradigm.com/tutorials/data-flow-diagram-example-securities-trading-platform.jsp Page 4 of 4

Don't mix up data flow and process flow
Some designers may feel uncomfortable when seeing a connector connecting from a data store to
a process, without seeing the step of data request being shown on the diagram somehow. Some
of them will try to represent a request by adding a connector between a process and a data store,
labeling it "a request" or "request for something", which is wrong.

Keep in mind that Data Flow Diagram was designed for representing the exchange of information.
Connectors in a Data Flow Diagram are for representing data, not for representing process flow, step
or anything else. When we label a data flow that ends at a data store "a request", this literally means
we are passing a request as data into a data store. Although this may be the case in implementation
level as some of the DBMS do support the use of functions, which intake some values as parameters
and return a result, in Data Flow Diagram we tend to treat data store as a sole data holder that does
not possess any processing capability. If you want to model the system flow or process flow, use
UML Activity Diagram or BPMN Business Process Diagram instead. If you want to model the internal
structure of data store, use Entity Relationship Diagram.

Resources
1. Securities-Trading-Platform.vpp

Visual Paradigm home page
(https://www.visual-paradigm.com/)

Visual Paradigm tutorials
(https://www.visual-paradigm.com/tutorials/)

https://www.visual-paradigm.com/features/database-design-with-erd-tools/#erd
https://cdn.visual-paradigm.com/tutorials/dfdsecuritiestradingplatform_screenshots/resources/Securities-Trading-Platform.vpp
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/tutorials/
https://www.visual-paradigm.com/tutorials/

